The Benefits of Pre-Bloom Foliar Applications of Boron and Calcium

Pink-bud or early bloom applications of boron and calcium are key components of pollen tube elongation that help ensure more **successful pollination and higher yields.**

Patrick Brown, Agnes M.S. Nyomora and Bill Krueger were among the first scientists to observe that foliar-applied boron had a significant influence on set and yield of almonds. QMIN polysaccharide technology helps ensure that foliar-applied calcium and boron get into the essential parts of the plant to **improve pollination and increase yields.**

**Pre-Bloom Foliar Application More Effective and Economical**

Emeritus cooperative extension specialist advisor L. Peter Christensen and farm advisor William L. Peacock note that foliar application is the more effective and economical application method to ensure a good crop. QMIN calcium and boron are compatible with fungicides, saving time and money without sacrificing effectiveness.

**Polysaccharide Complexes Ensure Higher Utilization, Faster Results**

Polysaccharide complexes enter the plant through the cuticle like most micronutrients. However, once in the plant, QMIN technology better regulates translocation and metabolism. This ensures higher utilization and faster results.

**Suggested Pre-Bloom Application Rates**

QMIN Boron at 1 qt/100 gal water  
QMIN Calcium at 1 qt/100 gal water

---

**Key advantages of QMIN technology:**

**Effective.** Across a wide variety of crops, QMIN technology has shown consistent nutrient uptake.

**Translocates.** Because plants naturally store polysaccharides for energy, they readily absorb QMIN’s polysaccharide protected nutrients then move them to new growth areas.

**Compatible.** In fertilizers and pesticides, QMIN’s unique chemistry and polysaccharide protection are effective in diverse applications.

**Safe.** Plant derived polysaccharide complexation helps to eliminate phytotoxicity.

---


Nyomora AMS, Brown PH, Krueger B. 1999. **Rate and time of boron application increase almond productivity and tissue boron concentration.** HortScience 34: 242-245.

L. Peter Christensen, William L. Peacock; **UC Davis; California Agriculture 60(2):100-103.** DOT: 10.3733/ca.v060n02p100. April-June 2006.