Trace Minerals and Immunity in Cattle
Authored by Dr. Greg Nunnery, Ph.D., Ruminant Nutritionist & Technical Support at QualiTech

Introduction
Proper nutrition has long been recognized as a prerequisite for a healthy immune function. Ancient writings from the Egyptians, Indians, and Greeks all include admonitions about foods and health; and further stress that to fully understand disease, the diet must be evaluated. However, the first truly scientific evidence linking nutrition and immunity came in 1810 when J.F. Menkel described thymic atrophy in malnourished patients. These early works eventually led to the discovery of the roles of lipids, proteins, energy, vitamins, and minerals in the body’s defense mechanisms. Although all nutrients are important for immune function, this newsletter will focus solely on the roles of trace minerals and their interaction with immunity.

Deficiencies and excesses of the trace minerals have a direct effect on the immune system and can make an animal more susceptible to infection. Specific ways that nutrition affects the immune system include:
- anatomical development of lymphoid tissue
- mucus/lung surfactant production
- synthesis of immunologically active substances
- cellular proliferation
- cellular activation and movement
- intracellular killing
- detoxification of free radicals produced by phagocytic cells
- modulation and regulation of immune processes

The trace minerals most often associated with immune function, and possibly most studied, are Cu, Zn, and Se. All of these minerals play an important role in antioxidant defense, Se through glutathione peroxidase, and Cu and Zn through Cu/Zn superoxide dismutase. The remainder of this newsletter will focus on the roles of these three minerals in immune function.

Copper
Copper is involved in all aspects of immune responsiveness. Through its role in Cu/Zn superoxide dismutase, Cu aids in the scavenging of free radicals, thus preventing oxidative damage. Copper deficient animals exhibit a decrease in the number of circulating neutrophils (Koller et al., 1987). Boyne and Arthur (1981) reported that respiratory burst and microbicidal activity of bovine peripheral blood neutrophils was decreased by Cu deficiency. Copper deficiency has also been shown to decrease activity of peritoneal macrophages (Babu and Failla, 1990) and reduce humoral and cell-mediated immune responsiveness (Bonham et al., 1990). Galyean et al. (1995) noted that adding organic Cu to the receiving diet tended to decrease the percentage of morbid steers compared with the control diet.

Selenium
The trace mineral Se is very important to immune processes. Selenium affects the development of nonspecific, humoral (antibody), and cell-mediated immune responses. A Se deficiency appears to result in immunosuppression, whereas supplementation results in augmentation and/or restoration of immune function. Specifically, Se deficiency inhibits:
- resistance to microbial and viral infections,
- neutrophil function
- antibody production
- proliferation of B and T lymphocytes in response to mitogens
- cytodestruction by T lymphocytes and natural killer cells

The exact mechanisms by which Se affects the immune system are largely speculative. The role of Se in glutathione peroxidase represents only one of many regulatory mechanisms.
Selenium research has shown that neutrophils from Se deficient calves had a decreased ability to kill Candida albicans (Boyne and Arthur, 1981). Reffett et al. (1988) found that Se-adequate calves had greater serum antibody titers to IBRV challenge than Se-deficient calves after a second challenge on d 35 of their study. Beck et al. (2005) noted that macrophage phagocytosis was increased in calves supplemented with Se yeast compared with control and sodium selenite supplemented calves. Furthermore, skin swelling responses after injection with PHA tended to be increased by Se supplementation.

Zinc
A nutritional deficiency of Zn is consistently associated with increased morbidity and mortality (Kincaid et al., 1997). Zinc deficiency can induce the following effects on immune function:

- Thymic atrophy and loss of T helper cell function
- Reduction in thymic hormones and Thy 1 positive lymphocytes
- Suppressed lymphocyte blastogenic response
- Decreased production of antibodies to T-dependant antigens
- Impaired natural killer cell activity, phagocytosis of macrophages and neutrophils, and chemotaxis and generation of oxidative burst

Johnson et al. (1988) reported that supplemental Zn increased gain, decreased medical treatments, and decreased morbidity. In a similar study, Galyean et al. (1995) found that morbidity from BRD was decreased by 52% in newly weaned steers fed 70 ppm supplemental Zn compared with steers receiving only 35 ppm Zn. Skin swelling response to PHA was greater for animals receiving supplemental Zn compared with control animals, suggesting a more responsive cell-mediated immune response (Engel et al., 1995 and Kegley et al., 2001). Salyer et al. (2004) reported no differences in morbidity and mortality between calves receiving Zn polysaccharide complex and Zn sulfate; however, calves receiving Zn polysaccharide complex had greater antibody titers in response to ovalbumin than calves fed Zn sulfate, an indication of increased humoral immunity.

Conclusion
With so many diverse roles in immune function, it is important to make sure these minerals are a part of any nutrition program. In some situations, it may be necessary to include a highly bioavailable, protected or organic trace mineral because antagonists in the diet may create a secondary deficiency. Proper trace mineral nutrition year round can help maintain a healthy productive herd.

Meet the Author

Greg Nunnery, Ph.D.
Ruminant Nutritionist & Technical Support at QualiTech, Greg has his masters from Texas A&M University and his Ph.D. from Texas Tech University. Please contact him if you have any questions or would like more information gregn@qualitechco.com.

We updated our website with new information and easier navigation to help you find the information you need. Check it out at qualitechco.com.

If you missed the webinar “What 6 key dairy additives should you insist on everyday in every ration?” with Dr. Michael Hutjens and Dr. Jack Garrett, please check out our website qualitechco.com.

For more information visit qualitechco.com or call 1.800.328.5870 ext. 222.